Tunneling Model for Heterojunction

CROSLIGHT	•
Software Inc	

This tutorial document requires Macromedia Flash player. If you have not installed it yet, please visit Macromedia web site and download free player. Copyright© Crosslight2006 www.crosslight.com

Contents

- Objective of the study.
- Schematic of the basic model.
- Drift-Diffusion(DD) model only.
- DD plus tunneling model.
- Al composition grading.
- Using large internal extra point.
- Comparison of each model.
- Summary.

Objective of the study

- To understand the significance of quantum tunneling model at heavily doped heterojunction.
- Investigate the effect of using composition grading and large internal extra point instead of using rigorous quantum tunneling model.

Schematic of the basic model

- GaAs/AlGaAs
 Heterojunction.
- Each layer is uniformly doped.
- 1-dimensional Structure.

DD-model only

- 1e24 (1/m³) n- and p-doping concentration.
- Hole transport is hindered by sharp energy barrier at the heterojunction.

Software Inc.

DD plus tunneling model

- Tunneling effect for hole is set near the hetero-junction.
 - Tunneling effect enhances carrier transport.

Al composition grading

- Grading distance is crucial for I-V characteristics.
- Large grading distance flattens out hole barrier.

What is the internal extra point?

- Internal extra mesh point defines the sharpness of heterojunction. It corresponds to the width of interface between different materials.
- Use of internal extra mesh point relaxes the dependence of results on the distribution of regular mesh points.

Using large internal extra point.

 Large Internal extra point also flattens out hole barrier and enhances carrier transport.

CRO

Software Inc.

Doping concentration dependence of I-V curve of each model

Tunneling effect becomes important at higher doping level.
 Proper choice of AI grading distance or internal extra point can bring I-V curve closer to rigorous tunneling model. CBOS

Software Inc.

Summary

- Quantum tunneling model causes distinguishable effect on carrier transport at high doping level.
- Al composition grading can mimic quantum tunneling effect by flattening potential barrier. However, choice of the grading distance is crucial.
- Using of sufficiently large internal extra point can bring same effects as in composition grading.
- Quantum tunneling model is a most reliable way to treat the quantum mechanical enhancement of carrier transport.

