Quantum Well Model for

Strained MOSFET

Contents

- Strained silicon quantum well model
- Biaxial tensile strained Si/SiGe MOSFET (theory and experiment)
- Uniaxial strained MOSFET (simulation)
- Summary

Strained Silicon

Strained Si on SiGe (Richard et. Al. J. Appl. Phys. Vol. 94,1795)

Complete first principle band Structure model too difficult To be included in 3D drift-Diffusion solver. Use Composition parameterization Instead.

Material macro needs for all composition

range:

Strained bandgap for differen valleys.

- DOS masses for each valley, for both perpendicular and parallel directions.
- Bandgap discontinuities.
 Physical based anisotropic mobility.

Crosslight's semi-classical valley-averaged mobility model.

- 1) MOS mobility change= valley dependent bulk mobility averaged over valley subbands in quantized states in MOS conduction channel.
- 2) Valley dependent bulk mobility change = effective mass change (acoustic-phonon intravalley scattering part) + scattering suppression due to band valley splitting (optical phonon part).

Bulk Silicon Mobility

Intra-valley Acoustic Phonon Scattering part:

$$\mu_{ac} = \frac{2^{3/2} \sqrt{\pi} e \hbar^4 \rho v_s^2}{3m^{*5/2} D_{ac}^2 (k_B T)^{3/2}} \propto T^{-1.5}$$

Ref: K. Uchida and J. Koga, "Mobility in Si MOSFETs", short course at Symposium on Nano Devices Technology SNDT, (Hsinchu, Taiwan), May 2004.

Bulk valley mobility is calibrated against bulk silicon and biaxial strained Si/SiGe system.

Parameterization of Strained Silicon Band Structure

Strained Si(1-x)Ge(x)/Unstrained Si(1-y)Ge(y)

Strained Si(1-x)Ge(x)/Unstrained Si(1-y)Ge(y)

Parameterization of Valence Split & Band Discont.

Strained Si(1-x)Ge(x)/Unstrained Si(1-y)Ge(y)

Strained Si(1-x)Ge(x)/Unstrained Si(1-y)Ge(y)

7

Parameterization of Effective Masses.

Strained Si(1-x)Ge(x)/Unstrained Si(1-y)Ge(y)

Strained Si(1-x)Ge(x)/Unstrained Si(1-y)Ge(y)

Contents

Strained silicon quantum well model

- Biaxial tensile strained Si/SiGe MOSFET (theory and experiment)
- Uniaxial strained MOSFET (simulation)
- Summary

A simple 2D strained MOSFET structure

Quantized Electron States in Si/SiGe

Lower valley: smaller parallel mass but larger perpendicular mass.

Higher valley: larger parallel mass but smaller perpendicular mass.

Carrier densities in Si/SiGe QW

Carrier density in each subband for different band valleys \rightarrow weighted average of physical quantities such as mass dependent mobility

CROSLIGHT Software Inc.

Simulated Mobility **Enhancement for Si/SiGe MOS** (biaxial tensile strain)

Effective mass change + valley splitting

→ mobility in each confined quantum state.

Quantum subband population weighted average

→Id-Vd prediction

0.4

Simulated drive current for a Si/SiGe (biaxial tensile) n-MOSFET based on strained QW model

Ge fraction =0.3 biaxial tensile channel=17.5 nm

Software Inc.

Contents

- Strained silicon quantum well model
 Biaxial tensile strained Si/SiGe MOSFET (theory and experiment)
- Uniaxial strained MOSFET (simulation)
- Summary

Uniaxial Tensile Strained-Silicon [100] direction

Delta4 has lower energy →transport/parallel mass=m_t →Good for mobility enhancement.

Uniaxial Compressive Strained-Silicon (PMOS)

Remark: Tensile biaxial strain splits HH/LH and quickly reduces the Heavy hole mass.

Conversion of parameters from biaxial to uniaxial

Assuming perfectly matched lattice constant in planes parallel to Si/SiGe interface + given thicknesses in xx direction

→ Convert strain from biaxial to uniaxial so that all calibrated data from Si/SiGe data base can be used for uniaxial strained silicon Lattice unit cell before SiGe growth:

After SiGe growth:

Direction of force

Simulated Electron Mobility Enhancement

Software Inc.

Quantized states of conduction band valleys

CRO

LIGH I Software Inc.

21

2D profile of quantized electron states under the gate

Benefits for typical Ux-S-Si n-MOSFET based on simulation

Saturation velocity enhancement=80 % of mobility enhancement

Simulated Hole Mobility Enhancement

Quantized states of valence band valleys

GHT Software Inc.

0.025

0.015

0.015

0.02

0.02

0.025

2D profile of quantized hole states under the gate

Gate length=80 nm, Vg=-2 V, Vd=-3 V

Remark: stress affects subband population

Benefits for typical Ux-S-Si p-MOSFET [110] based on simulation

Gate length=80nm, Uniaxial compressive stress=1 Gpa

Saturation velocity enhancement=50 % of mobility enhancement

Conclusions

- Crosslight's semi-classical quantum subband valley-averaged mobility model takes into account mass dependence, valley splitting and anisotropy.
- Enables self-consistent solution of driftdiffusion equations with quantum corrections using subband averaged density of states and mobility.
- Maybe used as TCAD to predict and optimize strained silicon MOSFET in various stress and crystal orientation.

