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Introduction:Device evolution

= Optoelectronic devices:

Laser diode: from double heterostructure laser to
guantum well laser and VCSELSs.

LED: from bulk to MQW and quantum dots. From red
(GaAs) to blue (GaN) emissions.

Solar cell: from single crystalline cell to tandem thin film
and multiple junction cells.

= Silicon IC:

CMOS gate length from several microns down to deep
submicrons.

Semiconductor from pure Si to strained Si on SiGe and
with various dielectric/drain contact materials.

= Modeling techniques:

Inclusion of quantum mechanics (QM) into classical drift-
diffusion equation solvers.

Modification of local drift-diffusion transport to include

ik . l non-local quantum transport effects. CROSLIGHT
T - . Software Inc.



Ik . I Integrated Quantum-Drift-Diffusion Model
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i i Quantization and quantum confinement

I in a quantum well

Conduction _Conduction
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Schematics of quantized state of a quantum well with (a) 2D concentration

distributed entirely within the well and (b) concentration modulated by the
envelop wave function.
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I . I Quantum/classical regions in a MOSFET
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T . I Example: self-consistent solution in
InGaN/GaN MQW LED

] I'_—__F'I 3,5 A -
2.5 - - 77 \l \J \I I
: Without P With
L polarization polarization
o] charge N charge _
) M a J\/\/\__—-

Remark: well known situation in MQW
LED and LD using InGaN/GaN QW
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Remark: notice the difference in elec/hole wave function

peak positions.
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. I Carrier profile and radiative recombination
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Remark: notice that the good overlap of electrons and

holes results in larger radiative recombination and
emission
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= n 1 IQE vs. current for typical MQW
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Remark: the well-known IQE droop effect can easily be
simulated using polarization charge on MQW and
heterojunction interfaces.
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I . I Quantum tunneling correction

bar

.J ‘J DD
TE

— >
Jie  Thermionic emission
J —>
DD

>

\ JDD

Jre  J¥ Enhanced by tunneling
factor from quantum

model. Numerically, it \
means current from

one mesh point goes to

a remote mesh point.

>

Drift-diffusion

_CROSLIGHT

Software Inc.




- . 15
=11
Quantum-DD model works!
E I I I I I
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Comparison of APSYS simulation of gate leakage current of an NMOS
with thin gate oxide with experimental data (ref: IBM J. Res.
Develop., vol. 43, No. 3, pp. 327-337, May 1999.).
1 I CROSLIGHT

Software Inc.



1 . I Demonstration: RTD simulation

total curr 1 (A

Figure 4. Band diagram. the confined wave function
and the resonant I-V characteristics indicating injection
carriers are energetically resonating with the confined
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I ] § Demonstration: InGaN LED superlattice
blocker
o g,
4.5 L | N | 4.5 ~ N
z Without SL : With SL blocker
Structure based on Ref: Lee et al. Appl. Phys. Lett. 88,
p.111101-1 (2006), which experimentally found
improved emission power for LED with superlattice
blocker.
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2D Simulation by APSY'S indeed shows improved
emission power and IQE, similar to experimental

observation.
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I Simulated quantum tunneling effect

" Hithout nithout
Mith 5L —— Hith sL

Cond, hand {eV}

1 1 1 1 1 1 1 1 1
a 1 2 3 4 ] G ¥ a a,a1 o0.82 B.,83 0,84 9,85 6,06 0,97 6.8 6,89 8,1
Yoltage Distance {un}

Remark: quantum tunneling enhancement factor is
actually larger for most of bias ranges. So the SL LED
performed better NOT because of quantum interference
effect as originally designed [see (a)]. Instead, the SL
countered the internal fields and helped increase the
overall barrier potential (b).
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About tunneling junction model

= Application:
Solar cell, VCSEL, bipolar cascade laser, LED.
Critical for design of many devices.

= Numerical Issues:

Equivalent carrier local generation has convergence
ISSuUes.

Improved convergence using equivalent mobility which is
difficult to estimate.

New approach: physically based TJ current across
junction implemented within drift-diffusion solver.

21
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= g junc
Tunneling junction lets e<-->h non-locally
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Numerical challenge: current flow across p-n junction
through many mesh points.

Example structure Ref: APL, 71, p3752, (1997)
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I . I Simulated 1-V in both forward and reverse dir
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Remark: careful adjustment of contact resistance is
necessary to get a good fit of experimental data.

Negative resistance only appears within rather small
range of contact resistance.
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| . I
Mini-band tunneling in Crosslight

= Application:
When supperlattice used as part of cathode/anode.

May be used to alter potential profile (e.g., to reduce
overall polarization field).

= Implementation:
Included as part of non-local tunneling.

Requires a single representative period for mini-band
computation --> So choose a period carefully.

Theory based on Ref: Physics Reports 357 (2002) 1-111
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Energy {eV)

= 26

. I Simple test structures

8.5 ! : ! 8.5
AN o —

-8.9 r -8.5

- 21 period GaN/AlGaN L ] Comparative n-i-n
n-i-n structure : homojunction

-0 E -2

-3 -3
=3.5 —_!‘ﬂwuwumm—_ =3.5 —'_u'-_—_ T __:-‘-h_‘_

8,45 8.5 8,55 8.6 8.6 8.45 8.5 8.55 8.6 8.6

Distance {micron} Distance {nicron}

Remark: tunneling region defined from n to n regions.
Al fraction is 16 percent for the barriers and well/barrier
width is 2.5nm. Polarization charge ignored for
simplicity.
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I . I First two mini-bands

a a2 a,.4 a,.6 a,8 1
Hiniband g-vector {2=pifa}

=-8.15

Remark: mini-band calculated according to a reference
period in the middle at bias of one volt. Energy
referenced to the potential of the above reference period.
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I . I Band diagrams at one volt bias

. . . a . .
a -8.5 /__.——
-8.5 - - o
—1 - -
—1'5 -
o -1,5 o
2 TR
o -2 o
o o
£ £ -2.5
5 -2.5 s
-3
—3 -
-3,5 L =3.9 1
-4 L -4
-4.5 T T T -4.5 T T T
0.45 0.5 0,55 8.6 8.6 0.45 0.5 0,55 8.6 8.6

Distance {micron} Distance {micron}

Remark: mini-band structure is recalculated at all small
bias steps to ensure self-consistency.
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Calculated 1-V curves
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Remark: homojunction with no barriers has the highest

current as expected. Without miniband transport,

superlattice has low current based on thermionic

emission only. Resonance between injection current and

miniband states caused enhanced carrier transport in _CROSLIGHT _
superlattice. Software Inc.
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Ik Two-Fermi-level quantum well trapping model

Non-Equilibrium Transport Model

uj"n ﬂ Jl'_'lut
> 2 —_—
} mrm—————— J fesc
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T
=¥ Tesc
¥ | 1
l Tinterh

n, confined level
n, unconfined level above

(b)

When the well is really narrow and deep, carriers may not reach
local equilibrium. Treat it as a carrier trap, with trapping rates
determined by phonon scattering theory.

Alam, Hybersten & al., IEEE Tran. Elec. Dev., Vol.. 47, No. 10, Oct. 2000, p. 1917
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Ik Mean free path-controlled quantum escape

Quansi-Equilibrium Transport Model

Jm Lt"]rl:ﬂ.l.t
i =
&

— >

T& aC

L i | ﬂ l
Tinterh
L

n confined level
1, unconfined level above

(a)

Given the mean free path of carrier, we expect direct flying over the
quantum well/dot with probability of exp(-D/lambda)
where D=well width & lambda=mean free path.
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Reference Structure

P-GaN

0.1 um

P-Aly 15Ga; gsN

0.01 um

In, ,4Ga, 5,N(3nm)/GaN(10nm) QW X 5

N-GaN

0.5 um

N-GaN

2.5 um

Size: 300 pum X 300 pm

The polarization charge set on the interface of QWs is 80% of the theoretical value calculated

based on the Ref. Appl. Phys. Letts, 80, 1204(2002).
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1-V Curve
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Drift-diffusion model shows unrealistically high turn-on voltage
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The impact of lifetime parameter
in Trapping model
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Ik . I Comparison
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g_trap_tau is the time constant for the 2-Fermi level trapping model.
In Crosslight, the default valueis 1 ps.
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The impact of the mean free path parameter
in Trapping model

CROSLIGHT

Software Inc.

_CROSLIGHT

Software Inc.



Ik

180

Comparison

160 |-

140 -

-

\S]

o
I

Current(mA)
=
N D [e0] o
o o o o
) ) ) v )

N
o
)

o
T

—— mfp=0.01

— mfp=0.011
mfp=0.012

— mfp=0.013

IQE

| -
|
i-

1 2

Voltage(V)

1.0

0.8

0.6

0.4

0.2

0.0

N

—— mfp=0.01

— mfp=0.011
mfp=0.012

B —— mfp=0.013

0 20 40 60 80 100

120 140 160 180

Current(mA)

mfp is the electron or hole mean free path. In the trapping model, it
controls the transport of carriers that fly-over and are not trapped.
In Crosslight, the default value is 0.01 (um).
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The impact of the mean free path parameter
in MFP model
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In MFP model, mfp is used for the exponential factor to control the non-local
current flow intensity. In Crosslight, the default value is 0.01 (um).
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Summary

= Conventional drift-diffusion solver has been modified
to include various quantum and non-local models.

= Such models turn out to be critical when simulating
devices involving guantum and non-local physics.

= Potential difficulty in such approach: all such
advanced treatment require some validity judgment
by users.
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