

Semiconductor Device Engineering and Crosslight TCAD

What is TCAD?

- TCAD stands for Technology Computer Aided Design, it is a software tool for device engineers and professionals to look into the device physics and its electrical thermal and optical performance.
- Unlike IC CAD, TCAD uses physical models and Finite Element Method (FEM) to simulate the semiconductor device behavior. IC CAD is using compact models (semi-empirical math equations)

Lighting Up the Semiconductor World: About Crosslight TCAD

A Glimpse

- A leading TCAD provider since 1993
- **▲** The world's No.1 TCAD simulator for optics and photonics application
- The world's first commercial TCAD for Laser Diode
- **△** Customer list extends to hundreds of companies, research institutions and universities world wide.
- Complete product portfolio for 2D/3D semiconductor device simulation
- *Café-time Simulator*. Windows based, user friendly GUI makes simulation more enjoyable.

 □ Café-time Simulator. Windows based, user friendly GUI makes simulation more enjoyable. □ Café-time Simulator. □ Café-time Simulation more enjoyable. □ Café-time Simulator. □ Café-t

Crosslight Global Offices

Vancouver Headquarter

Shanghai Office

Japan Office

Taiwan Distributor

China Distributor

India and Southeast Asia Distributor (Future) Korea Distributor

Product Portfolio For Microelectronics **Application**

CSuprem ---- Advanced Semiconductor Process Simulator TCAD --- Windows based

- 2D/3D Capable
- Quasi-3D/full 3D
- plane-stacked 3D to ensure flexibility and efficiency

APSYS ---- Advanced Semiconductor Device Simulator TCAD ---- Windows based

- 2D/Full 3D Capable
 Band-Engineering based
- MQW, Impact Ionization

CrosslightView ---- Graphic User Interface (GUI) ---Windows based

- 2D/3D Rotation
- 3D meshing
- Automatic MOSFET Threshold Extraction

CSUPREM Features

- Originated from Stanford University's Suprem IV, 2D/3D capable
- ▲ Innovative simulation tools to ensure a fast and seamlessly transfer from process to device simulation
- ➤ Stacked3D technology enables ultra efficient 3D structure combined with powerful and easy to use 3D editor to provide class leading 3D simulation experience
- Windows based and user friendly Graphic User Interface (GUI)
- ▲ AutoTCAD for generating a series of simulations from parameter variations, perfect for overnight simulations
- Embedded easy 2D/3D setup tool, grammar check tool, *point and show* wizard help and tutorial movies for a jump start

3D Simulation of Semiconductor Devices Using *MaskEditor*

About3D Simulation

Why 3D?

▲ Device is 3D in nature, lots of devices need 3D simulation for better accuracy. For example, Superjunction LDMOS, metal interconnect, etc.

Do you need 3D Simulation?

- Does your device have variation along the third (z) dimension?
- ➤ Do you want to examine some peripheral behavior of the device, like fringe current at the corner of race-track shaped gate?
- ▲ Does your device have a special shape from top down view? (like CMOS Image Sensor, or HEXFET)?

Challenges for 3D Simulation:

- ► Extremely time consuming. As hard as it may be to believe, traditional 3d simulation time may be longer than the actual fabrication time for large power semiconductor devices.
- ➤ Difficult to build the structure and optimize the mesh.

Crosslight's Approach of 3D Simulation

Stacked3D

▲ Crosslight has developed a unique 3D simulation package. Instead of traditional approach, which basically starts from bulk (conventional 3D FEM), Crosslight starts from 2D planes, and stacks them to form the 3D structure.

Stacked3D Example:

Advantages of Stacked3D

Stacked3D Advantages

- Lighly Efficient, generally less mesh points required, mesh density can easily be varied
- **Easy** to build: It starts from 2D planes
- **Easy** to optimize mesh. The mesh can be optimized for individual planes
- Increased 3D success rate from successful 2D simulation
- Directly extract 2D planes and 2D simulation

Simulation Examples:

CMOS Process Flow

11. Spacer etch

10. Spacer deposit

9. Poly deposit

12. FEOL result: doping

Simulation Examples: NPN BJT

Simulation Examples:

NPN BJT (Continued)

x(micron)

Gummel Plot

Simulation Examples: LDMOS

Simulation Examples:

LDMOS (Continued)

BV @ different Temperatures

Simulation Examples:

SuperJunction LDMOS

SJ LDMOS Net Doping

SJ LDMOS Potential lines

2D Simulation of MOSFET Threshold Voltage Using AutoTCAD

A New Batch Testing and Design of Experiments Tool

What is Design of Experiments for TCAD?

- Suppose you are a device engineer, responsible for the design a MOSFET
- Now, you have a target for threshold voltage, for example, 1.2V. You want to know how to choose the gate oxide thickness and body(channel) doping
- ➤ For gate oxide, suppose you have two choices, one is 25nm, the other is 35nm, while for body doping, you have two choices for both energy and dose
- Windows based and user friendly Graphic User Interface (GUI)
- ▲ AutoTCAD for generating a series of simulations from parameter variations, perfect for overnight simulations
- Embedded easy 2D/3D setup tool, syntax check tool, *point and show* wizard help and tutorial movies for a jump start

AutoTCAD Features

- ► Works together with CSUPREM and APSYS to deliver an easy to use Design of Experiments from process to device simulations.
- Tree structure with color indicators to monitor the simulation status.
- ▲ Direct extract important parameters like Vt, BV, Rdson, etc. (under development, will be available in near future)

Where is AutoTCAD?

I am here! Look for the Robot Icon

A Simple Example for Threshold Voltage Simulation Using AutoTCAD

- Process simulation parameters to experiment:
 - Boron doping in the body/substrate
 - Gate Oxide thickness
- Device simulation parameters to experiment:
 - Voltage on the body contact (body bias)

Step 1a. Choose the parameters and values 2 variations for Process Simulation: boron doping

Step 1b. Choose the parameters and values 2 variations for Process Simulation: oxide thickness

Step 2. Choose the parameters and values for Device Simulation: Body bias

Step 3. AutoTCAD table summarizes the Variables

AutoTCAD Table

Step 4. AutoTCAD Tree Generated from the table.

Step 5. AutoTCAD Batch Simulation

All nodes at idle mode

AutoTCAD

conc=1e+016

dick=0.025

value_to=-0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=-0.5

value_to=-0.5

value_to=0.5

value_to=0.5

value_to=0.5

value_to=0.5

➤ First node is under simulation mode

➤ First node simulation has successfully finished, second node is in simulation mode

▲ All nodes have successfully finished

Auto Extraction of Threshold Voltage by CrosslightView

Ongoing improvements and near future releases

- ► Full release of AutoTCAD, with direct extraction of important parameters like BV, VT and Rdson in a couple of weeks. (The parameter extraction capability is ready, and is now being implemented to the AutoTCAD GUI)
- New Release of SimuCenter, the most powerful GUI from Crosslight. SimuCenter will act as a central hub to connect all the functions of Crosslight's products, and make the simulation experience even more enjoyable
- Codeless Simulation. Iconize process steps and device simulation steps

Creators of Award Winning Software

CROSSLIGHT Software Inc.

