A Self-consistent Model of Quantum Well Infrared Photodetectors (QWIP)

Copyright 2006 Crosslight Software Inc. www.crosslight.com

Contents

- Theory
- Single well consideration
- Simulation of full device
- Conclusions

Quantum Capture/Escape

- Bound and unbound states in a quantum well are from solution of quantum mechanical wave equation.
- Population of carriers within a quantum well is based on a rate equation approach with electron capture/escape.
- Capture/escape rates are calculated from LO phonon-electron scattering rates [1][2].

[1] Smet, Fonstad, and Hu, J. Appl. Phys., Vol. 79, No. 12, p. 9305, 15 June 1996
[2] Savić *et al.* J. Appl. Phys. **98**, p. 084509, 2005

Quantum Drift-Diffusion Model

- Poisson's equation is solved to determine the local electrical field distribution based on doping and free carrier distribution in 2/3 dimensions.
- Transport in QWIP is based on drift-diffusion theory with quantum corrections when treating heterojunctions and quantum wells [1].
- Depending on computation resources, intersubband optical absorption spectrum may be imported from a single well model or self-consistently obtained from full device simulation for each well.

[1] "Quantum drift-diffusion model", presentation file available: http://www.crosslight.com/downloads/quantum_dd.pdf

Contents

Theory

Single well consideration

- Simulation of full device
- Conclusions

Bound and Unbound States

Intersubband transition model

Remark: all possible intersubband transitions between energy levels are evaluated to compute the absorption spectrum. Gaussian line broadening is assumed in this calculation.

Contents

Theory Single well consideration Simulation of full device Conclusions

Simulated band diagram

[1] Thibaudeau, Bois, and Duboz,

J. Appl. Phys., Vol. 79, No. 1, p. 446, 1 January 1996

Dark current model

-2 -2.5 -3 Thermionic emission according to local field appears to account for the dark -3.5 og<A/cm^2> current behavior correctly. -4 Crosslight -4.5 Optionally quantum tunneling and hot-Simulation carriers models may be activated which -5 may result in better in fit. -5.5 -6 2 3 0 1 4 5 Contact Voltage<1>(V) 10* SAMPLE C Dark Current Density (A/cm²) (a) **Other theories** in the 10 reference. 10" experiment theory homogeneous model 2 3 CROBias Voltage (V) Software Inc.

Current versus light

- Carrier excitation from bound state in well to unbound state in barrier is based on quantum correction to drift-diffusion theory so that a macroscopic 2/3 dimensional model for the full device may be simulated at a reasonable time scale.
- Extraction of photo-carriers to the electrode may be based on local field profile or on an average global field intensity, depending on how localized the photocarriers are.

Bias dependent responsivity

- Simulation of responsivity at low bias indicates that for this particular device, photo-carrier extraction is insensitive to details of local field distribution.
- The photo-carrier extraction behavior is better explained by an averaged global field dependence.
- Possible explanation : energetic photocarriers in the unbound states are not well localized and tend to experience an average field at a larger length scale.

SAMPLE C

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Û

Responsivity (A/W)

5

CRO

Software Inc.

Bias Voltage (V)

3

2

Conclusions

- Crosslight's APSYS has been adapted to provide a comprehensive physical model of QWIP.
- Reasonable agreement with experiment verifies the adequacy of the model.
- Non-local quantum correction to the driftdiffusion theory is needed to explain photocarrier extraction in QWIP properly.

