

A Practical New Approach to 3D TCAD Simulations

By: Simon Li, Fred Y. Fu, Lisa Li and Kentaro Uehara

What is TCAD?

TCAD stands for **"Technology Computer Aided Design**" where a software tool is used to simulate the semiconductor process technology and a device's electrical, thermal and optical properties

Why TCAD?

TCAD can boost **productivity** and increase **efficiency** for semiconductor technology development in Foundries, IDMs and even fabless companies. TCAD is like **Virtual Fabrication and Testing** of semiconductors

Why 3D TCAD?

For decades, TCAD has been limited to 2D, because:
Lack of computing power for the simulator
Device structures have little variations in the third dimension

Nowadays 3D simulation is increasingly important: •Pronounced three dimensional effect •Better understanding of device physics

[4]

www.crosslight.com

Intel's latest 22nm Ivy Bridge processor featuring 3D FINFET

Contents

3D TCAD mesh generation with stacked straight planes

Example 1: CMOS Image Sensor Example 2: CMOS Process Flow Example 3: Super Junction LDMOS Example 4: Complex Interconnect Example 5: FINFET simulated with NEGF Example 6: Racetrack LDMOS

3D stacked bent planes

Example 1: Array of silicon pillars Example 2: Racetrack LDMOS comparison Example 3: 3D diodes breakdown Example 4: Vertical DMOS and vertical diode

GPU simulation

Example 1: FDTD of light propagation and optical intensity Example 2: 3D circular LDMOS growth Example 3: LIGBT

Summary

3D TCAD Mesh Generation

Prism Mesh
✓ Higher Efficiency
✓ Easier to build and control
✓ Directly extract 2D planes
✓ Better convergence

✗ Relatively new

- Tetrahedral Mesh
- ✓ Relatively mature
- ✓ Available from many vendors
- ✗ Less efficient
- ✗ Difficult to control
- X Convergent problems

[5]

Example: CMOS Process Flow

Example: Super Junction LDMOS

Super Junction LDMOS can achieve lower on-resistance with the same breakdown voltage as conventional LDMOS

Example: Complex Interconnect

Example: FINFET with NEGF

A simple FINFET is simulated with Non-Equilibrium Green's Function (NEGF)

Example: Simple FINFET with NEGF

- The device is divided into classical drift-diffusion (DD) region (mainly in vicinity of source/drain contacts) and quantum ballistic transport (QBT) region in the channel
- > NEGF (Non-Equilibrium Green's Function) model is employed in QBT region
- Poisson's equation solver is used in both DD and QBT regions

Electron density of val=1 sub=1 along the channel. As V_d increases, more electrons will be injected from source to drain by ballistic transport.

Example: Racetrack LDMOS

www.crosslight.com

Contents

3D TCAD mesh generation with stacked straight planes Example 1: CMOS Image Sensor Example 2: CMOS Process Flow Example 3: Super Junction LDMOS Example 4: Complex Interconnect Example 5: FINFET simulated with NEGF Example 6: Racetrack LDMOS

3D stacked bent planes

Example 1: Array of silicon pillars Example 2: Racetrack LDMOS comparison Example 3: 3D diodes breakdown Example 4: Vertical DMOS and vertical diode

GPU simulation

Example 1: FDTD of light propagation and optical intensity Example 2: 3D circular LDMOS growth Example 3: LIGBT

Summary

Bent Planes

While straight stacking planes are good at handling rectangular shaped structures, they can be inefficient for curvatures. For arbitrary and curved structures, a novel method is to apply a new kind of planes called bent planes inserted between straight planes. These bent planes greatly optimize the mesh design in the Z direction

Bent Planes

Straight planes + bent planes solution can help reduce the total mesh and avoid the unnecessarily dense mesh locations in the straight planes only method

With straight planes only (75) Mesh size: 33000

Straight planes (9) + bent planes (12) Mesh size: 4800

Example: Array of Silicon Pillars

- Total Mesh Count: 52682
- Straight planes: 134
- Process Simulation time: 50 minutes

- Total Mesh Count: 4958
- Planes: 2 straight+ 16 bent planes
- Process Simulation time: 2 minutes

[6]

Example: Racetrack LDMOS

Structure with straight stacked planes only (with oxide and metal layers removed) Structure with straight and bent planes (with metal layers removed)

www.crosslight.com

Example: 3D Diodes Breakdown Stacked Stacked **Bent Planes** Net_Doping Net_Doping Bent Planes 20 15 15 N: 5E+15 cm-N: 5E+15 cm 10 10 N+ 5 5 Đ. N+ 0 0 +Z +Z -5 20 -5 20 15 -10+X 20 -10+X 20 10 -15 -15 -20 -20

Elec Field Mag. (V/cm) Electric field crowding 500000 450000 400000 Elec Field Mag. (V/cm) 350000 300000 300000 250000 250000 200000 150000 200000 100000 50000 0 150000 100000 20 20 15 50000 15 10 10 y(micron) 0 x(micron)

Breakdown Voltage= 50V

Elec Field Mag. (V/cm)

Breakdown Voltage= 67V

Example: Vertical DMOS and Diode

Contents

3D TCAD mesh generation with stacked straight planes

Example 1: CMOS Image Sensor Example 2: CMOS Process Flow Example 3: Super Junction LDMOS Example 4: Complex Interconnect Example 5: FINFET simulated with NEGF Example 6: Racetrack LDMOS

3D stacked bent planes

Example 1: Array of silicon pillars Example 2: Racetrack LDMOS comparison Example 3: 3D diodes breakdown Example 4: Vertical DMOS and vertical diode

GPU simulation

Example 1: FDTD of light propagation and optical intensity Example 2: 3D circular LDMOS growth Example 3: LIGBT

Summary

GPU Simulation

Simplified CPU Architecture

Simplified GPU Architecture

www.crosslight.com

GPU Simulation Benchmark

GPU (Graphic Processing Unit) simulation enables large scale parallels simulation to greatly reduce simulation time

Process simulation benchmark test with GPU+CPU and CPU only

Intel core i7 3770 with 32 G memory and 64bit Windows 7 OS. GPU: NVidia Geforce GTX 690

www.crosslight.com

GPU Simulation:

FDTD (Finite-difference time-domain) simulation of light propagation and optical intensity from top of a lens

Example: 3D Circular LOCOS Growth

LOCOS: Local Oxidation of Silicon, simulated with GPU

Oxidation and diffusion are the most time consuming steps in a semiconductor process simulation. Fortunately, it is possible to make the simulation job done in parallel. GPU simulation of oxidation and diffusion greatly reduces the total simulation time

www.crosslight.com

Example: LIGBT Switch-off Transient

Transient simulation of a segmented anode Lateral Insulated Gate Bipolar Transistor (LIGBT) with GPU

Hole plasma diminishing in the silicon overtime

www.crosslight.com

Summary

Practical new approaches for 3D TCAD simulation:

- Prism mesh instead of conventional pyramid mesh for less convergent issues and more efficient mesh generation
- ✓ Bent planes are created for curvatures and arbitrary shapes in the Z direction
- ✓ GPU simulation can dramatically reduce simulation time

* CPU: i7-3770, GPU: NVidia Geforce GTX 690, Memory: 32 G

Devices	Mesh size	Process simulation time (GPU)	Device simulation time (GPU)
3D E-field	35,000	20 minutes	1.1 hours
LIGBT	167,000	2 hours	35 hours
Super Junction LDMOS	177,000	4.25 hours	55 hours

About Crosslight

A Canadian company with **20** years of history The world's **first** commercial TCAD for laser diode The world's **NO.1** provider of optics and photonics TCAD The world's **most advanced** stacked planes 3D TCAD

Reference

- 1. http://www.geek.com/articles/chips/chinese-semiconductor-foundries-facing-major-consolidation-20090422/
- 2. http://www.mse.cornell.edu/research/resgroups/thompson/index.html
- 3. <u>http://eda360insider.wordpress.com/2011/05/19/3d-thursday-intel-and-finfets-tri-gate-transistors%E2%80%94a-different-kind-of-3d/</u>
- 4. http://techland.time.com/2012/04/23/intels-ivy-bridge-processors-launch-at-last-how-do-they-perform/
- 5. <u>http://cilmpvnc.wordpress.com/tag/geometry/</u>
- 6. Simon Li and Yue Fu, 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics, Springer, 2011

