

# Simulation of Type-II Quantum Well Photodetectors

© 2013 Crosslight Software Inc.

#### **Applicable Models and Features**

Input command looping technique to set up 150 pairs of coupled type-II MQW.

Type-II MQW optical gain/absorption spectrum from complex-MQW optical gain model.

Design of absorption spectrum by adjusting type-II band alignments.

Effective mini-band model based on quantum mechanical calculation.



#### **Tutorial example**

\* Structure similar to

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, Jr.,
"A 2.3um CUTOFF WAVELENGTH PHOTODIODE ON InP USING LATTICE-MATCHED GalnAs-GaAsSb TYPE-II QUANTUM WELLS,"
2005 International Conference an Indium Phosphide and Related Materials, p. 148, 2005.



Figure 1. Schematic device structure and band lineup between GalnAs-GaAsSb

<sup>\*</sup> Key adjustable parameters: bandoffset and mobility.

### Type-II QWPD: band structure design







### Type-II QWPD: electron densities







# Type-II QWPD: hole densities







#### Type-II QWPD: electron subbands







# Type-II QWPD: optical gain or -absorption







### Type-II QWPD: spontaneous emission







### Type-II QWPD: band diagram at 2 Volt







### Type-II QWPD: band diagram at 2 Volt







### Type-II QWPD: dark current





Figure 2. Dark current vs. voltage from a 64µm diameter device, measured at 200K, 225K, 250K, 275K, and 295K.





#### Type-II QWPD: current response





Figure 3. Normal incidence photoresponse at 200K, 250K, and 295K, measured at -2V bias.





### Type-II QWPD: external efficiency







### Type-II QWPD: responsivity







### Type-II QWPD: light intensity profiles









### Type-II QWPD: optical generation





### Type-II QWPD: electron concentration









### Type-II QWPD: hole concentration







#### **Discussions**

PD response as a function of wavelength depends on 3 factors:

- (1) Intrinsic material absorption spectrum;
- (2) Amount and location of absorption for different wavelengths;
- (3) Miniband transport and optical generation

Dark current originated from spontaneous recombination which dominates the tunnelling current at dark.





#### Summary

Crosslight software ready with

- (1) Accurate computation of minibands of type-II MQW.
- (2) Prediction of material optical absorption spectrum and spontaneous recombination rate as a cause of dark current.
- (3) Non-local transport of tunnelling current based on quantum mechanical calculation taking into account local optical generation rates.

Crosslight model demonstrated through a typical type-II MQW PD with results consistent with experimental measurements.



# A Glimpse

# **Crosslight Software**

- A leading TCAD provider since 1993
- The world's No.1 TCAD simulator for optics and photonics application
- The world's first commercialized TCAD for Laser Diode
- Customer list extends to hundreds of companies, research institutions and universities world wide.
- Originally licensed from the National Research Council Canada and later from Stanford University
- Complete product portfolio for 2D/3D semiconductor device simulation
- Café-time Simulator. Windows based, user friendly graphic user interface makes simulation more enjoyable.



# Creators of Award Winning Software





