Modeling Single- and Polycrystal Silicon Solar Cells

Copyright 2006-8 Crosslight Software Inc. www.crosslight.com

Contents

Introduction

- Process simulation using CSuprem
- Theories and basic cell properties
- Si rear-contacted cells (RCC)
- Si PERT cells
- Summary

Hot market

Increasing growth of global-wide market for photovoltaic system

Efficient & affordable

Silicon solar cells - first demonstrated photovoltaic devices.

Compatible with well-established fabrication technology.

High efficiency & output at an affordable cost.

source www.nrel.gov

Process simulation: laser scribing or laser-fired-contact

• Simulation challenges:

- Laser heating spot undergoes melting / phase transition.
- A challenge to calculate heating temperature
- Due to strong focusing of the laser beam, full 3D simulation for both process and device is preferred.

Simulation of laser scribing/laser-fired-contacts

- Use Csuprem (2D/3D) to set up mesh structure of tandem/ thin film layers.
- Transfer mesh data from Csuprem to APSYS to simulate local heating temperature profile based on laser parameters (pulse power, spot size, etc.).
- Transfer local heating temperature profile data from APSYS to Csuprem to simulate diffusion of aluminum impurity into silicon.
- Transfer mesh + doping profile data from Csuprem to APSYS to simulate solar-cell performance (I-V curves) under AM1.5.

APSYS simulation of local heating profile

7

Theoretical background

Based on drift-diffusion theory, solving several coupled equations: Poisson, electron & hole drift-diffusion, etc...

Advanced model features

Bulk/surface recombination models.

- Bulk/surface trapping effects.
- Optical coating model (with multi-layer optical interference effects).
- 3D raytracing combined with multiple layer optical coating models. Raytracing performed over the full solar spectrum.
- Wavelength dependence effects in solar spectrum, bulk material and optical coating.

Si-PIN solar cells

- Electron & hole mobility & lifetime models calibrated with experimental data.
- Silicon-PIN diode thin film solar cell simulated.

n+-Si i-Si p+-S	i
-----------------	---

- Varying n⁺ layer dopant density while keeping others unchanged.
- Varying i-layer thickness while keeping others unchanged.
- Temperature, surface recombination effect & coating effects

Si-PIN doping effects: I-V Curve & Voc

Voc enhancement caused by reduced diode saturation current Is (enhanced built-in voltage) with increased n⁺ dopant density (see "Physics of Semiconductor Devices", S. M. Sze).

Si-PIN layer thickness effects: I-V curve & Isc

Short-circuit current enhanced due to the enhancement of photogenerated carriers with wide intrinsic absorption layer.

Si-PIN temperature dependence

Cell performances degrades as temperatures increases, consistent with semiconductor diode & cell theory & some observed exper. results [Refs: MA Green, Prog. Photovolt: Res. Appl., 11 (2003) pp333-340, & DL Pulfrey, Photovoltaic Power Generation, Van Nostrand Reinhold, New York 1978].

Si PIN surface recombination & coating effect

I-V curves with various front surface recombination velocity. Back surface recombination (BSR) effect negligible for small BSR velocity.

There is optimal coating layer thickness for specific coating material.

Poly-Si PIN solar cells

Electr. & hole mobility & lifetime models same as Si inside grain.

Grain boundary influence on mobility & lifetime implemented.

Poly Si PIN diode solar cell simulated to investigate grain size effect on the cell performance.

Varying grain size while keeping other parameters unchanged.

Poly-Si grain size effects: I-V curve & Isc

Grain size affects both short circuit current & open circuit voltage.

Poly-Si V_{oc} in comparison with experiment

- Introduction
- Process simulation using CSuprem
- Theories and basic cell properties
- Si rear-contacted cells (RCC)
- Si PERT cells
- Summary

Setup of 2D device structure with Crosslight LayerBuilder.

Setup of 2D triangle shape with Crosslight GeoBuilder.

Enhanced optical absorption computed with ray-tracing technique. Comparing flat and triangle textured cases.

Structure mesh: flat (left) & triangle (right). Structure not to the scale (all triangles at front with height 5.6494 μm & equal sides; 54.7 Deg between side & horizontal direction).

RCC – Ray tracing +Y 12 -10 . **Optical coating** may be inserted 8 into any internal or external interfaces 4 2 . 10 15 25 30

Ray tracing shows how reflected incident rays have a chance to re-enter the device, thereby increasing light absorption. Device truncated for clarity.

CRO

RCC – Absorption enhancement

Effect of Textured surface

Ray tracing can also include the effects of multilayer optical coatings: interference effects, wavelength-dependent refractive index, etc

CRO

RCC narrow device – I-V curve comparison

Triangle structure leads to 20.6% increase over flat structure, indicating actual cell conversion efficiency could increase from 17.6% (assumed for flat) to 21.23% (triangle textured).

CRO

Incorporating scale factor – large device

RCC large device – I-V curve comparison

Triangle structure leads to 20.65% increase over flat structure, indicating actual cell conversion efficiency could increase from 17.6% (assumed for flat) to 21.23% (triangle textured). Resistive slope at the ceiling is due to the enlarged series resistance with large separation between p & n contact pads.

Effect of series resistance

With various width; Larger W, higher R_s, lower efficiency.

Importing doping profile from CSuprem

- Use CSuprem (another package) to generate diffSC.str file.
- Use attached show2d.exe to generate acceptor & donor doping profile data diles, SCa.dat & SCd.dat.
- Use "doping ..." command lines in sol file to import these doping profiles.

I-V curve with CSuprem doping profile

With imported doping profiles & with triangle textured surface & coating at front top.

Setup of 3D device structure with Crosslight layer 3D for full 3D simulation.

LIGHI Software Inc.

Light power density within 3D RCC

Solar absorption (total absorption thickness 250 μ m). AM 1.5 illumination assumed. Intensity integrated over full spectrum. 100 nm SiO₂ coating at the front surface.

CRO

Generation & Recombination – 3D RCC

Current flow – 3D RCC

Comparison with experiment – 3D RCC

Figure 1: Schematic diagram of SunPower's low-cost rear-contact solar cell (not to scale). NB: This diagram depicts an *n*-type base, but it could equally well be a *p*-type base.

Ref: Keith R. McIntosh et al, "The choice of Silicon wafer for the production of low-cost rear-contact solar cells," in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003, vol. 1, pp 971-974.

Triangle texture handled by ray tracing separately.

Results comparison

Results in general agreement with experimental. Also consistent with results of other simulator.

Effect of surface recombination

recombination could be effectively suppressed.

- Introduction
- Process simulation using CSuprem
- Theories and basic cell properties
- Si rear-contacted cells (RCC)

Setup of 3D device structure with Crosslight LayerBuilder (bottom totally diffused p⁺/middle lightly-p/top n⁺, device xy size 250x500 μ m²).

- Band diagram at equilibrium (assuming 240 μ m for the middle p-layer, cut through middle x along y).
- Relative energy density distribution, illumination from top at large y-value. Energy density decreases more for thick p-layer.

CRO

Typical simulated IQE

Remark: Simulation series were set from GUI to scan wavelength to compute short circuit current \rightarrow IQE

with very thin emitter n⁺ layer ($\sim 0.25 \ \mu$ m) is preferred.

CROSLIGHT Software Inc.

3D PERT cell – buried n contact

Setup of 3D device structure with Crosslight LayerBuilder (bottom totally diffused p+/middle p/top n+, assuming total middle p-layer 240 μ m, grooving depth into the middle p-layer around 10 μ m, device xy size 250x500 μ m²). CRONIGHT Software Inc

Generation & recombination

(light doped) p-layer is preferred.

PERT cell with record efficiency

Ref: JH Zhao et al, "24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates," Solar Energy Materials & Solar Cells 66 (2001) 27-36.

Setup of 2D device structure with Crosslight LayerBuilder.

Triangle texture handled by ray tracing separately.

2D modeling I-V curves

CROSLIGHT Software Inc.

Summary

 Crosslight's flexible material database (user accessible macros) makes it easy to implement Si & poly-Si mobility & lifetime as a function of doping and grain size.

- Device simulation is fully integrated with process simulation.
- Si rear-contacted cells (RCC) simulated with results in agreement with experiment.
- When combined with Crosslight's 2D/3D ray tracing module, complex solar cell structures with textured surface may be treated.
- PERT cell devices with front surface n contact & with buried n contact together with texture and coating simulated and results are selectively demonstrated.

