Simulation of silicon based thin-film solar cells

Copyright 1995-2008 Crosslight Software Inc. www.crosslight.com

Hot market

Increasing growth of global-wide market for photovoltaic system

Efficient & affordable

Silicon solar cells - first demonstrated photovoltaic devices.

Compatible with well-established fabrication technology.

High efficiency & output at an affordable cost.

source www.nrel.gov

Theoretical background

Based on coupled drift-diffusion and Poisson equations

$$-\nabla \cdot \left(\frac{\varepsilon_0 \varepsilon_{dc}}{q} \nabla V\right) = -n + p + N_D (1 - f_D) - N_A f_A + \sum_j N_{tj} \left(\delta_j - f_{tj}\right)$$
$$\nabla \cdot J_n - \sum_j R_n^{tj} - R_{sp} - R_{st} - R_{au} + G_{opt}(t) = \frac{\partial n}{\partial t} + N_D \frac{\partial f_D}{\partial t},$$
$$\nabla \cdot J_p + \sum_j R_p^{tj} + R_{sp} + R_{st} + R_{au} - G_{opt}(t) = -\frac{\partial p}{\partial t} + N_A \frac{\partial f_A}{\partial t}.$$

Bulk/surface recombination models.

Bulk/surface trapping effects.

Advanced model features

- Optical coating model (with multi-layer optical interference effects).
- 3D ray tracing combined with multiple layer optical coating models. Ray tracing performed over the full solar spectrum.
- Wavelength dependence effects in solar spectrum, bulk material and optical coating.
 - Bandgap, mobility and lifetime models for some specific materials.

Model features for a-Si

Exponential tail states & inter-gap dangling bond (DB) states (Gaussian distribution assumed).

Figure source: Semiconductor for solar cells, H J Moeller, 1993 Artech House, Inc.

Quantum tunneling models

- Tunneling important for simulating thin-film tandem cells
- Modification of classical & local drift-diffusion transport to include non-local quantum transport/tunneling effects.
 - Non-local quantum transport models
 - Intraband tunneling.
 - Interband tunneling (tunneling junction).
 - Mini-band tunneling (superlattice).
 - Non-equilibrium fly-over transport.
 - Non-equilibrium quantum escape.

Integrated quantum drift-diffusion model

Interband tunneling – tunnel junction

Application:

- Solar cell, VCSEL, bipolar cascade laser, LED.
- Critical for design of many devices.

Numerical issues:

- Equivalent carrier local generation has convergence issues.
- Improved convergence using equivalent mobility which is difficult to estimate.
- New approach: physically based TJ current across junction implemented within driftdiffusion solver.

Tunneling junction lets e<-->h non-locally

Numerical challenge: current flow across p-n junction through many mesh points.

Example structure Ref: APL, 71, p3752, (1997)

Remark: careful adjustment of contact resistance is necessary to get a good fit of experimental data.

Negative resistance only appears within rather small range of contact resistance.

Spectrum source: J. Springer et al, Proc. 16th European Photovoltaic Solar Energy Conference, James&James Sci. Publ. (2000), p. 434.

> CROSLIGHT Software Inc.

Absorption spectrum Comparison

Triple junction (TJ) tandem cell, α -Si PIN (1.72 eV) top junction/ α -SiGe PIN (1.5 eV) middle junction/ α -SiGe PIN (1.25 eV) bottom junction.

ITO/ZnO material

ITO could be set as a conductive metal layer or as a semiconductor layer with wide bandgap about 3.6 eV. ITO work function ranges from 4.3 eV to 5.1 eV. If setting ITO as transparent, absorption index *k* is set zero.

α -Si:H PIN solar cells

Amorphous Si (α -Si:H) materials: tail states near conduction and valence band edge; two deep level dangling bond states donor-like D^{+/0} & acceptor-like D^{0/-}.

- Tail states usually exponential distribution; dangling bond states Gaussian distribution.
- Density of States (DOS), especially dangling bonds states levels in the band gap can be different depending whether the material is p-, intrinsic or n-type.

Amorphous Si solar cells made of thin films deposited on substrate like glass.

Two PIN devices: one with P⁺/I/N⁺ layer thickness as 0.03μ m/ 0.5μ m/ 0.01 μ m respectively (Ref: G A Swartz, JAP 53 (1) 1982 pp712-719); the other with P⁺/I/N⁺ layer thickness as 0.009μ m/ 0.5μ m/ 0.02μ m respectively ("Amorphous and Microcrystalline Silicon Solar Cells, Modeling, Materials and Device Technology", book by R E I Schropp & M Zeman).

α-Si:H PIN modeling results & comparison: I

Deep states associated with a-Si increase the series resistance & lead to more resistive I-V curve with degraded cell efficiency.

Experimenta	Cell	η (%)	$R_c(\Omega)$	Slope R vs 1/J _{sc} (mV)	β	Normal- ized slope at V = 0 $S(V^{-1})$	J _{sc} (mA)	V _{rx} (V)	F.F.	$(\mu au)_n$ (cm ² /V)	$(\mu \tau)_{ ho}$ (cm^2/V)	$N_{A}^{-}(\text{cm}^{-3})N_{D}^{+}(\text{cm}^{-3})$
	C03130-P	5.4	4.3	87	1.05	0.17	10.85	0.832	0.6			
- ·	Grid shade	owing =	6%									

Software Inc.

α-Si:H PIN modeling results & comparison: II

For P+/I/N+ device (with layer thickness as 0.009μm/0.5μm/0.02μm respectively in Ref: "Amorphous and Microcrystalline Silicon Solar Cells, Modeling, Materials & Device Technology", book by R E Schropp & M Zeman).

Deep states associated with a-Si increase the series resistance & lead to more resistive I-V curve with degraded cell efficiency.

CRO

LIGHI Software Inc.

Effect of deep trap states

Low efficiency of a-Si solar cell is due to deep traps. Simulations for cells without traps show ideal I-V characteristics.

The random interfaces similar to the left structure modeled with assumed optical absorption enhancement factor to reflect the light trapping effect.

μ -Si/ α -Si PIN tandem cells: bandgap

Software Inc.

25

µ-Si/α-Si PIN tandem cells: comparison of I-V curves

With light tapping optical absorption enhancement, cell efficiency is comparable to the experimental for similar cells.

μ -Si/ α -Si PIN tandem cells: I-V curve

Tunneling implemented between top & bottom subcells, also between μ -Si & ITO; Modeling shows higher efficiency.

α -Si/ α -SiGe/ α -SiGe TJ tandem cell

Triple junction (TJ) tandem cell, α -Si PIN (1.72 eV) top junction/ α -SiGe PIN (1.5 eV) middle junction/ α -SiGe PIN (1.25 eV) bottom junction.

Energy band: α -Si/ α -SiGe/ α -SiGe TJ cell

Optic generation: α -Si/ α -SiGe/ α -SiGe TJ cell

Top junction – thinnest, bottom junction – thickest as top & middle junctions absorb high-energy photons & bottom junction absorbs rest of the highenergy photons & low-energy photons.

I-V curve: α -Si/ α -SiGe/ α -SiGe TJ cell

CROSLIGHT Software Inc.

Summary

 Physical models & quantum tunneling are introduced for Crosslight APSYS together with other advanced modeling features.

- Model for a-Si & material absorption properties for a-Si, muC-Si, a-SiGe & ITO/ZnO described.
- Modeling results for a-Si PIN solar cell, dual junction muC-Si/a-Si & triple junction a-Si/a-SiGe/a-SiGe tandem cells are demonstrated.
 - When combined with Crosslight's 2D/3D ray tracing & FDTD modules, Crosslight APSYS can be effectively utilized for Si-based thin film solar cell design.

