Simulation of Patterned Saphire Substrate LED by FDTD

© 2011 - Crosslight Software Inc.

Schematic of Two Different Textured Structures

Triangle shape texture on GaN/Sapphire interface

OSLIGHT Software Inc.

Circle shape texture on GaN/Sapphire interface

Theoretical Approach

х

- FDTD simulation yields time evolution of electromagnetic fields by solving time dependent Maxwell's equations.
- Point dipole source is a model of spontaneous emission center of LED. Statistical averaging over different dipole orientations and locations is required to obtain incoherent result.
- Fourier transformed electromagnetic field, i.e. farfield pattern, gives angular distribution of radiation intensity.

Interface between APSYS and FDTD

GHT

Available FDTD solvers

- MEEP: Free software developed at MIT <u>http://ab-initio.mit.edu/wiki/index.php/Meep</u>
- Acceleware: Commercial FDTD solver with support for GPU-accelerated calculations.
 Strongly recommended for large 3D problems.
 <u>http://acceleware.com/fdtd-solvers</u>

Advanced features of APSYS/FDTD simulation model

- 2D/3D structure is seamlessly exported from APSYS to FDTD simulation.
- Far-field radiation pattern calculation and utility programs for visualization using FDTD results.
- Optical FDTD solution incorporated into electronic part of APSYS simulation.

Software Inc.

Effect of dipole location

CROSLIGHT Software Inc.

Angular distribution of radiation intensity

Statistical average operation was done by summing FFP data obtained from simulation of X, Y, Z dipole orientations and five different locations of dipole source, i.e. 15 different FDTD simulations.

Statistical averating is required to obtain incoherent and unpolarized result from FDTD simulations.

Far-field data in this plot were normalized by source power, so the integration of each curve gives extraction efficiency of upward radiation.

Comparison of LED power extraction efficiency

Triangle shape texture on GaN/Sapphire interface

 $\eta_{ext} = \int S(\theta, \varphi) d\theta d\varphi / P_0$

 η ext for triangle shape=17.6 percent

ηext for circle shape=20.8 percent

Circle shape texture on GaN/Sapphire interface

CPU timing and size of simulation

- Each FDTD run took 5 minutes on Intel Core2 Duo E6600 processor.
- Statistical averaging needed to obtain results for incoherent LED light emission requires 15 FDTD runs. So, entire simulations for one device structure took around 75 minutes.
- Number of FDTD cells used is 139 200.

- Two LED device structures with different texture shape were simulated by APSYS/FDTD, and angular distribution of radiation intensity was obtained.
- Difference of texture shape is reflected in radiation intensity.
- FDTD simulation for 3-D structure is feasible in the same way as 2-D.

