3D Modeling of Superluminescent Light-Emitting Diodes

Outline

- Introduction
- Theoretical models based on Green's function theory
- Results and comparison with experiments
- Summary

Introduction

- SLED is a light source with properties between those of LED and LD, high power, broad band and good directionality
- Used in communication, sensing, and medical instruments.
- SLED spectrum is sensitive to carrier distribution inside MQWs.
- Accurate modeling tool is useful for the design

Continue

- LED: spontaneous emission, broad band, low power
- LD: stimulated emission, narrow band, high power, high directionality
- SLED: amplified spontaneous emission, broad band, high power, high directionality

Theoretical Models

- So far, two types of model in literatures
 - 1-D wave equation along *z* (propagation) direction. Neglects the carrier transport on transverse plane and lateral optical confinement.
 - 2-D carrier transport model, assumes uniform carrier distribution in *z*, and neglects spatial hole burning (SHB).
- Our approach combines 3-D carrier transport, 2-D transverse optical profile and 1-D optics along *z*

System of equations

3D drift-diffusion equation:

$$\nabla \cdot \epsilon \nabla \phi + q(n - p - N_D^+ + N_A^-) = 0$$
$$\nabla \cdot J_n = U + q \frac{\partial n}{\partial t}$$
$$-\nabla \cdot J_p = U + q \frac{\partial p}{\partial t}$$

Separating 3D optical field:

$$E_{\omega}(x, y, z) = \sum_{n} E(z)_{\omega} \psi_{n}(x, y)$$

Transverse Helmholtz equation:

$$\Delta_T \psi_n(x, y) + \frac{\omega^2}{c^2} \varepsilon \psi_n(x, y) = k_n^2 \psi_n(x, y)$$

Green's function theory

1-D inhomogeneous Helmholtz equation

Spontaneous noise

$$\left[\frac{\partial^2}{\partial z^2} + k_n^2(z)\right] E_{\omega}(z) = f_{\omega}(z)$$

Green's function is a solution of

$$\left[\frac{\partial^2}{\partial z^2} + k_n^2(z)\right]g(z, z_s) = \delta(z - z_s)$$

Contribution of point source at z_s to the field at z

Continue

Solution $E_{\omega}(z) = \int_{0}^{L} g(z, z_{s}) f_{\omega}(z_{s}) dz_{s}$

Spontaneous noise power

$$< S_{\omega}(z) > = \int_{-\infty}^{\infty} < E_{\omega}(z) E_{\omega'}^{*}(z) > d\omega'$$

Z.Q. Li and Simon Li, IEEE JQE, vol.46, p.454, 2010 R. Loudon et al., J. Lightw. Tech., vol.23, 2491,2005

Test device structure

QW1: 15nm $In_{53}Ga_{47}As$

QW2: 6nm $In_{67}Ga_{33}As_{72}P_{28}$

Barrier: 15nm In₈₆Ga₁₄As₃₀P₇₀

Length: 300µm

C.F. Lin, et al. IEEE Photon. Tech. Lett. Vol16, p1441,2004

Lateral mode profile

Multiple lateral modes can be included

Material gains of QW

QW1: two transitions QW2:one transition Broad band 1.3-1.6um

CROSLIGHT Software Inc.

Carrier distribution at different injections

Carrier first captured in QW1, and in QW2 at high injection

CROSLIGHT Software Inc.

Modal gain at different injections

Hole density along z

I-V and L-I curves

Amplifier spontaneous emission

CROSLIGHT Software Inc.

3D effect on ASE

Cavity length: 900 μm 3D effect shown at higher injections

Summary

- Comprehensive model for SLED simulation is presented. 3D carrier dynamics and longitudinal SHP are included.
- Carrier distribution is important for broad-band SLED.
- SHB is not negligible at high injections
- Full 3D simulation is necessary

