

Low Field Mobility Model

© Crosslight Software, Inc., Vancouver, BC, Canada, (604)320-1704, www.crosslight.com

♦ <u>Syntax</u>

- Functions and parameters
- ◆ <u>NMOS example</u>

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Software Inc. APSYS | CSUPREM | LASTIP | PICS3D | PROCOM | CROSSLIGHTVIEW

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

2. Syntax

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

The statement **low_field_mobility_model** is used to active different mobility models under a low electric field.

• If more than one mobility model is activated, the different mobility contributions are combined in the form:

$$\frac{1}{\mu} = \frac{1}{\mu_{dop}} + \frac{1}{\mu_{eh}} + \frac{1}{\mu_s}$$

where μ_{dop} is the contribution of bulk scattering, μ_{eh} is the contribution of carrier to carrier scattering, and μ_s is the surface contribution.

- The Philips unified mobility model describes mobility degradation due to both bulk scattering and carrier to carrier scattering mechanisms. Therefore, if *el_philips_unified_model /hole_philips_unified_model=yes* is combined with *doping_dependence_model* or *carrier_carrier_model*, APSYS uses only the Philips unified mobility model.
- ◆ If *doping_dependence_model=void* and *philips_unified_model=no*, APSYS uses the originally formulas to calculate µ_{dop}:

$$\mu_{oi} = \mu_{1i} + \frac{(\mu_{2i} - \mu_{1i})}{1 + (\frac{N_D + N_A + \sum_j N_{tj}}{N_{ri}})}^{\alpha_i} \quad (i = n \text{ or } p)$$

- *channel_interface_dir=horizontal/vetical* is necessary if *degradation_model* is activated.
- *channel_interface_label* is position label specified the location of the interface.
- ♦ eg:

low_field_mobility_model el_philips_unified_model = yes el_phili_umax=0.1417 mater=1

This statement actives philips unified model for electron, and the parameter umax in the function is specified as 0.1417 $m^2/(V \cdot s)$ for mater number 1.

low_field_mobility_model

Parameter	Data type	Default value
el_doping_dependence_model	char	[void],masetti, arora, uni_bologna
hole_doping_dependence_model	char	[void],masetti, arora, uni_bologna
el_carrier_carrier_model	char	[void],conwell_weisskopf, brooks_herring
hole_carrier_carrier_model	char	[void],conwell_weisskopf, brooks_herring
el_degradation_model	char	[void],enhanced_lombardi, uni_bologna_inversion
hole_degradation_model	char	[void],enhanced_lombardi, uni_bologna_inversion
el_philips_unified_model	char	[no],yes
hole_philips_unified_model	char	[no],yes
channel_interface_dir	char	[void], horizontal, vertical
channel_interface_label	char	[void],mylabel
mater	intg	[1], 2, 3

3.Functions and parameters

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Doping dependent mobility model

low_field_mobility_model supports three models for doping-dependent mobility.

Masetti model:
$$\mu_{dop} = \mu_{min1} \exp\left(-\frac{P_c}{N_i}\right) + \frac{\mu_{max}(\frac{T}{T_0})^{-\zeta} - \mu_{min2}}{1 + \left(\frac{N_i}{C_r}\right)^{\alpha}} - \frac{\mu_1}{1 + \left(\frac{C_s}{N_i}\right)^{\beta}}$$

Where $N_i = N_A + N_D$ denotes the total concentration of ionized impurities.

Symbol	Parameter (el_/hole_)	Data type	Elec value	Hole value	Unit
μ_{max}	mase_umax	real	0.1417	0.04705	$m^2/(V \cdot s)$
ζ	mase_exponent	real	2.5	2.2	1
μ_{min1}	mase_umin1	real	0.00522	0.00449	$m^2/(V \cdot s)$
μ_{min2}	mase_umin2	real	0.00522	0	$m^2/(V\cdot s)$
μ_1	mase_u1	real	0.00434	0.0029	$m^2/(V \cdot s)$
P_c	mase_pc	real	0	9.23E+22	m^{-3}
Cr	mase_cr	real	9.68E+22	2.23E+23	m^{-3}
C_s	mase_cs	real	3.34E+26	6.10E+26	m^{-3}
α	mase_alpha	real	0.68	0.719	1
β	mase_beta	real	2.0	2.0	1

Masetti model: Default coefficients

Arora model:

$$\mu_{dop} = \mu_{min} + \frac{\mu_d}{1 + (\frac{N_i}{N_0})^{A^*}}$$

with
$$\begin{cases} \mu_{min} = A_{min} \cdot \left(\frac{T}{T_0}\right)^{\alpha_m} \\ \mu_d = A_d \cdot \left(\frac{T}{T_0}\right)^{\alpha_d} \\ N_0 = A_N \cdot \left(\frac{T}{T_0}\right)^{\alpha_N} \\ A^* = A_a \cdot \left(\frac{T}{T_0}\right)^{\alpha_a} \end{cases}$$

where $N_i = N_A + N_D$ denotes the total concentration If ionized impurities, $T_0 = 300K$, and T is the lattice temperature.

Symbol	Parameter (el /hole)	Data type	Elec value	Hole value	Unit
A _{min}	ar_umin	real	0.0088	0.00543	$m^2/(V \cdot s)$
α_m	ar_alpha_m	real	-0.57	-0.57	1
A_d	ar_d	real	0.1252	0.0407	$m^2/(V \cdot s)$
α_d	ar_alpha_d	real	-2.33	-2.23	1
A_N	ar_n	real	1.25E+33	2.35E+23	m^3
α_N	ar_alpha_n	real	2.4	2.4	1
A _a	ar_a	real	0.88	0.88	1
α_a	ar_alpha_a	real	-0.146	-0.146	1

Arora model: Default coefficients for silicon

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

University of Bologna bulk mobility model:

$$\begin{split} \mu_{dop}(N_A, N_D, T) &= \mu_0(N_A, N_D, T) + \frac{\mu_L(T) - \mu_0(N_A, N_D, T)}{1 + (\frac{N_D}{C_{r1}T_n^{\gamma_{r1}}})^{\alpha} + (\frac{N_A}{C_{r2}T_n^{\gamma_{r2}}})^{\beta}} \\ &- \frac{\mu_1(N_A, N_D, T)}{1 + (\frac{N_D}{C_{s1}T_n^{\gamma_{s1}}} + \frac{N_A}{C_{s2}})^{-2}} \end{split}$$

with
$$\begin{cases} \mu_L(T) = \mu_{max} T_n^{-\gamma + cT_n} \\ \mu_0(N_A, N_D, T) = \frac{\mu_{0d} T_n^{-\gamma_{0d}} N_D + \mu_{0a} T_n^{-\gamma_{0a}} N_A}{N_D + N_A} \\ \mu_1(N_A, N_D, T) = \frac{\mu_{1d} T_n^{-\gamma_{1d}} N_D + \mu_{1a} T_n^{-\gamma_{1a}} N_A}{N_D + N_A} \\ T_n = \frac{T}{300K} \end{cases}$$

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Symbol	Parameter(el_/hole_)	Data type	Elec value	Hole value	Unit
μ_{max}	uni_bolo_umax	real	0.1441	0.04705	$m^2/(V \cdot s)$
С	uni_bolo_c	real	0.07	0	1
γ	uni_bolo_gama	real	2.45	2.16	1
Yod	uni_bolo_gama_0d	real	0.6	1.3	1
μ_{od}	uni_bolo_u_0d	real	0.0055	0.009	$m^2/(V \cdot s)$
Υ _{0a}	uni_bolo_gama_0a	real	1.3	0.7	1
μ_{oa}	uni_bolo_u_0a	real	0.0132	0.0044	$m^2/(V \cdot s)$
γ_{1d}	uni_bolo_gama_1d	real	0.5	2.0	1
μ_{1d}	uni_bolo_u_1d	real	0.00424	0.00282	$m^2/(V \cdot s)$
Υ _{1a}	uni_bolo_gama_1a	real	1.25	0.8	1
μ_{1a}	uni_bolo_u_1a	real	0.00735	0.00282	$m^2/(V \cdot s)$
γ _{r1}	uni_bolo_gama_r1	real	3.65	2.2	1
C_{r1}	uni_bolo_C_r1	real	8.9E+22	1.3E+24	m^{-3}
γ_{r2}	uni_bolo_gama_r2	real	2.65	3.1	1
C_{r2}	uni_bolo_C_r2	real	1.22E+23	2.45E+23	m^{-3}
γ_{s1}	uni_bolo_gama_s1	real	0.0	6.2	1
C_{s1}	uni_bolo_C_s1	real	2.9E+26	1.1E+24	m^{-3}
C_{s2}	uni_bolo_C_s2	real	7.0E+26	6.1E+26	m^{-3}
α	uni_bolo_alpha	real	0.68	0.77	1
β	uni_bolo_beta	real	0.72	0.719	1

Parameters of University of Bologna bulk mobility model

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Carrier to carrier scattering model

Low_field_mobility_model supports two models for the description of carrier to carrier scattering.

Conwell-Weisskopf model:

$$\mu_{eh} = \frac{D\left(\frac{T}{T_0}\right)^{\frac{3}{2}}}{\sqrt{np}} \left[\ln \left(1 + F(T/T_0)^2(pn)^{-1/3}\right)\right]^{-1}$$

Where n/p are the electron and hole densities respectively, T denotes the lattice temperature, and T_0 =300K.

Conwell–Weisskopf model: Default parameters

Symbol	Parameter(el_/hole_)	Data type	Elec value	Hole value	Unit
D	con_wei_D	real	1.04E+16	1.04E+16	$1/(m \cdot Vs)$
F	con_wei_F	real	7.452E+17	7.452E+17	m^{-2}

Brooks-Herring model:

$$\mu_{eh} = \frac{c_1 (\frac{T}{T_0})^{3/2}}{\sqrt{np}} \frac{1}{\phi(\eta_0)}$$

With $\phi(\eta_0) = \ln(1+\eta_0) - \frac{\eta_0}{1+\eta_0}$
 $\eta_0(T) = \frac{c_2}{N_c F_{-\frac{1}{2}}(\frac{n}{N_c}) + N_v F_{-\frac{1}{2}}(\frac{p}{N_v})} (\frac{T}{T_0})^2$

Where T denotes the lattice temperature, $T_0 = 300K$.n and p are the electron and hole densities, respectively, and $F_{-\frac{1}{2}}\left(\frac{n}{N_c}\right)$ is the derivative of the Fermi integral.

Brooks-Herring model: Default parameters

Symbol	Parameter(el_/hole_)	Data type	Elec value	Hole value	Unit
<i>C</i> ₁	bro_her_c1	real	1.56E+15	1.56E+15	$1/(m \cdot Vs)$
<i>C</i> ₂	bro_her_c2	real	7.63E+25	7.63E+25	m^{-3}

Philips unified mobility model:

$$\frac{1}{\mu_{i,b}} = \frac{1}{\mu_{i,L}} + \frac{1}{\mu_{i,DAeh}}$$

 $\mu_{i,L}$ represents phonon scattering, $\mu_{i,DAeh}$ accounts for all other bulk scattering mechanisms (due to free carriers, and ionized donors and acceptors). The index "i" takes the value "e" for electrons and "h" for holes.

$$\mu_{i,L} = \mu_{i,max} (\frac{T}{T_0})^{-\theta_i}$$

where T denotes the lattice temperature and $T_0 = 300K$.

$$\mu_{i,DAeh} = \mu_{i,N} \left(\frac{N_{i,sc}}{N_{i,sc,eff}} \right) \left(\frac{N_{i,ref}}{N_{i,sc}} \right)^{\alpha_i} + \mu_{i,c} \left(\frac{n+p}{N_{i,sc,eff}} \right)^{\alpha_i}$$

with
$$\mu_{i,N} = \frac{\mu_{i,max}^2}{\mu_{i,max} - \mu_{i,min}} \left(\frac{T}{T_0}\right)^{3\alpha_i - 1.5}$$

$$\mu_{i,c} = \frac{\mu_{i,max}\mu_{i,min}}{\mu_{i,max} - \mu_{i,min}} \left(\frac{T}{T_0}\right)^{0.5}$$

for the electrons:

$$N_{i,sc} = N_{e,sc} = N_D^* + N_A^* + p$$
$$N_{i,sc,eff} = N_{e,sc,eff} = N_D^* + G(P_e)N_A^* + \frac{p}{F(P_e)}$$

and for the holes:

$$N_{i,sc} = N_{h,sc} = N_A^* + N_D^* + n$$
$$N_{i,sc,eff} = N_{h,sc,eff} = N_A^* + G(P_h)N_D^* + \frac{n}{F(P_h)}$$

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

The effects of clustering of donors (N_D^*) and acceptors (N_A^*) at ultrahigh concentrations are described as:

$$N_D^* = N_D \left[1 + \frac{1}{c_D + \left(\frac{N_{D,ref}}{N_D}\right)^2} \right]$$
$$N_A^* = N_A \left[1 + \frac{1}{c_A + \left(\frac{N_{A,ref}}{N_A}\right)^2} \right]$$

The analytic functions are given by:

$$F(P_i) = \frac{0.7643P_i^{0.6478} + 2.2999 + 6.5505(\frac{m_i^*}{m_j^*})}{P_i^{0.6478} + 2.3670 - 0.8552(\frac{m_i^*}{m_j^*})}$$
$$G(P_i) = 1 - \frac{a_g}{\left[b_g + P_i\left(\frac{m_0}{m_i^*}\frac{T}{T_0}\right)^{\alpha_g}\right]^{\beta_g}} + \frac{c_g}{\left[P_i\left(\frac{m_0}{m_i^*}\frac{T}{T_0}\right)^{\alpha_g'}\right]^{\gamma_g}}$$

where
$$m_0$$
 is the free carrier mass and m_i^* denotes a fit parameter (which is related to effective carrier mass). m_i^* denotes the corresponding fit parameter for holes if i=e and for electrons if i=h.

The screening parameter P_i is given by a weighted harmonic mean of the Brooks-Herring approach and Conwell-Weisskopf approach:

$$P_{i} = \left[\frac{f_{CW}}{3.97 \times 10^{13} N_{i,sc}^{-2/3}} + \frac{f_{BH}}{\frac{1.36 \times 10^{26}}{n+p} (\frac{m_{i}^{*}}{m_{0}})}\right]^{-1} \left(\frac{T}{T_{0}}\right)^{2}$$

Parameter(el_/hole) Symbol Elec value Hole value Unit Data type $m^2/(V \cdot s)$ phili umax real 0.1417 0.04705 $\mu_{i,max}$ $m^2/(V \cdot s)$ 0.00522 0.00449 phili umin real $\mu_{i,min}$ θ phili theta real 2.285 2.247 1 m^{-3} $N_{e/h,ref}$ phili e ref real 9.68E+22 2.23E+23 0.68 0.719 1 phili alpha real α m^{-3} 4.0E+26 4.0E+26 $N_{D,ref}$ phili d ref real m^{-3} phili a ref 7.2E+26 7.2E+26 N_{A,ref} real phili c d 0.21 0.21 1 real C_D phili c a 0.5 0.5 1 real C_A m_e^* phili me real 1.0 1.0 1 m_h^* 1.258 phili mh real 1.258 1 1.0 1 phili m0 real 1.0 m_0 fcw phili fcw real 2.459 2.459 1 phili fbh 3.828 3.828 1 fвн real phili_a_g real 0.89233 0.89233 1 a_{g} real 0.41372 0.41372 1 b_g phili_b_g 1 real 0.005978 0.005978 phili_c_g C_{g} 0.28227 0.28227 phili_alpha_g real 1 α_{g} α'_{g} phili alpha g2 0.72169 0.72169 1 real β_g phili beta g 0.19778 0.19778 real 1 phili_gama_g 1.80618 1.80618 1 real γ_g

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Mobility degradation at interfaces:

In the channel region of a MOSFET, the high transverse electric field forces carriers to interact strongly with the semiconductor-insulator interface. Carriers are subjected to scattering by acoustic surface phonons and surface roughness. The models in this section describe mobility degradation caused by these effects.

University of Bologna inversion layer mobility model:

$$\overline{\mu} = \overline{\mu_{bsc}} + \overline{\mu_{ac}} + \overline{\mu_{sr}}$$

where $\frac{1}{\mu_{bsc}}$ is the contribution of Coulombic scattering, and $\frac{1}{\mu_{ac}} \frac{1}{\mu_{sr}}$ are those of surface phonons and surface roughness scattering, respectively.

1 1 *D D*

 $D = e^{-x/l_{crit}}$ (where x is the distance from the interface and l_{crit} a fit parameter) is a damping that switches off the inversion layer terms far away from the interface.

$$\mu_{bsc} = \mu_b [D(1 + f_{sc}^{\tau})^{\frac{1}{\tau}} + (1 - D)]$$

Where μ_b is given by the bulk mobility model.

The screening function is given by:

$$f_{sc} = \left(\frac{N_1}{N_A + N_D}\right)^{\eta} \frac{N_{min}}{N_A + N_D}$$

 N_{min} is the minority carrier concentration.

The main scattering mechanisms (surface phonons and surface roughness scattering) are expressed by:

$$\mu_{ac} = c \left(\frac{T}{T_0}\right)^{-\gamma_c} \left(\frac{N_A + N_D}{N_2}\right)^a \frac{1}{F_\perp^{\delta}}$$
$$\mu_{sr} = d \left(\frac{T}{T_0}\right)^{\gamma_d} \left(\frac{N_A + N_D + N_3}{N_4}\right)^b \frac{1}{F_\perp^{\lambda}}$$

 F_{\perp} is the electric field normal to semiconductor-insulator interface.

Parameters of University of Bologna inversion layer mobility model

Symbol	Parameter(el_/hole_)	Data type	Elec value	Hole value	Unit
<i>N</i> ₁	uni_boloinve_n1	real	2.34E+22	2.02E+22	m^{-3}
<i>N</i> ₂	uni_boloinve_n2	real	4.00E+21	7.80E+21	m^{-3}
N ₃	uni_boloinve_n3	real	1.00E+23	2.00E+21	m^{-3}
N_4	uni_boloinve_n4	real	2.40E+24	6.60E+23	<i>m</i> ⁻³
d	uni_boloinve_d	real	5.80E+15	7.82E+11	$m^2/(V\cdot s)$
Υd	uni_boloinve_gamad	real	0	1.4	1
С	uni_boloinve_c	real	1.86	0.5726	$m^2/(V\cdot s)$
Υc	uni_boloinve_gamac	real	1.6	1.3	1
τ	uni_boloinve_tau	real	1.0	3.0	1
η	uni_boloinve_eta	real	0.3	0.5	1
а	uni_boloinve_a	real	0.026	-0.02	1
b	uni_boloinve_b	real	0.11	0.08	1
l _{crit}	uni_boloinve_lcrit	real	1.0E-8	1.0E-8	т
δ	uni_boloinve_delta	real	0.29	0.3	1
λ	uni_boloinve_lambda	real	2.64	2.24	1

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Enhanced Lombardi model:

$$\frac{1}{\mu} = \frac{1}{\mu_b} + \frac{D}{\mu_{ac}} + \frac{D}{\mu_{sr}}$$

 μ_b is given by the bulk mobility model.

The surface contribution due to acoustic phonon scattering has the form:

$$\mu_{ac} = \frac{B}{F_{\perp}} + \frac{C(N_i/N_0)^{\lambda}}{F_{\perp}^{\frac{1}{3}}(T/T_0)^k}$$
$$\mu_{sr} = \left(\frac{\left(F_{\perp}/F_{ref}\right)^{A^*}}{\delta} + \frac{F_{\perp}^{3}}{\eta}\right)^{-1}$$

where $N_i = N_A + N_D$, $T_0 = 300K$. The reference field $F_{ref} = 1V/cm$. D = e^{-x/l_{crit}} (where x is the distance from the interface and l_{crit} a fit parameter) is a damping that switches off the inversion layer terms far away from the interface. F_{\perp} is the transverse electric field normal to the semiconductor-insulator interface. And the exponent A^* is described as:

$$A^* = \mathbf{A} + \frac{\alpha_{\perp}(n+p)N_{ref}^{\nu}}{(N_i + N_1)^{\nu}}$$

where the reference doping concentration $N_{ref} = 1 cm^{-3}$.

Lombardi model: Default coefficients for silicon

Symbol	Parameter(el_/hol e_)	Data type	Elec value	Hole value	Unit
В	lombard_B	real	4.75E+5	9.925E+4	m/s
С	lombard_C	real	0.26921	1.36788	$m^{5/3}/(V^{2/3}s)$
N ₀	lombard_n0	real	1.0E+6	1.0E+6	m^{-3}
λ	lombard_lambda	real	0.1250	0.0317	1
k	lombard_k	real	1.0	1.0	1
δ	lombard_delta	real	5.82E+10	2.0546E+10	$m^2/(V \cdot s)$
A	lombard_A	real	2.0	2.0	1
α_{\perp}	lombard_alpha	real	0	0	m^3
N ₁	lombard_n1	real	1.0E+6	1.0E+6	m^{-3}
ν	lombard_v	real	1.0	1.0	1
η	lombard_eta	real	5.82E+32	2.0546E+32	$V^2/(m\cdot s)$
l _{crit}	lombard_lcrit	real	1.0E-8	1.0E-8	<i>m</i>

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

4.NMOS example

This example is an n-type mosfet.

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Layer Structure:

The layer file used to define this device is shown below:

```
$file:nmos.layer
begin_layer
$
rotation angle=0.00
column column_num=1 w=0.6 mesh_num=5 r=0.8
column column num=2 w=0.8 mesh num=8 r=-1.2
column column num=3 w=0.4 mesh num=12 r=1.
column column num=4 w=0.2 mesh num=6 r=-1.2
column column num=5 w=2. mesh num=10 r=1.25
$
bottom_contact column_num=1 from=0 to=0.6 contact_num=1 contact_type=ohmic
bottom contact column num=2 from=0 to=0.8 contact num=1 contact type=ohmic
bottom contact column num=3 from=0 to=0.4 contact num=1 contact type=ohmic
bottom contact column num=4 from=0 to=0.2 contact num=1 contact type=ohmic
bottom_contact column_num=5 from=0 to=2. contact_num=1 contact_type=ohmic
$
layer mater macro name=si column num=1 p doping=6.e+22
layer mater macro name=si column num=2 p doping=6.e+22
layer_mater macro_name=si column_num=3 p_doping=6.e+22
layer_mater macro_name=si column_num=4 p_doping=6.e+22
layer_mater macro_name=si column_num=5 p_doping=6.e+22
layer d=2.3 n=10 r=0.7
```


	1
layer_mater macro_name=si column_num=1 p_doping=6.e+22	
layer_mater macro_name=si column_num=2 p_doping=6.e+22	
layer_mater macro_name=si column_num=3 p_doping=6.e+22	
layer_mater macro_name=si column_num=4 p_doping=6.e+22	
layer_mater macro_name=si column_num=5 p_doping=6.e+22	
layer d=0.2 n=8 r=1.	
layer_position label=mylabel location=top	
\$	
layer_mater macro_name=void column_num=1	
layer_mater macro_name=sio2 insulator_macro=yes	
column_num=2	
layer_mater macro_name=sio2 insulator_macro=yes	
column_num=3	
layer_mater macro_name=sio2 insulator_macro=yes	
column_num=4	
layer_mater macro_name=void column_num=5	
layer d=0.02 n=4 r=1.2	
\$	
layer_mater macro_name=void column_num=1	
layer_mater macro_name=poly column_num=2	
layer_mater macro_name=poly column_num=3	
layer_mater macro_name=poly column_num=4	
layer_mater macro_name=void column_num=5	
layer d=0.48 n=4 r=1.2 z_gaussian_tail=0.0001	
top_contact column_num=1 from=0 to=0.4 contact_num=4	
contact_type=ohmic	
top_contact column_num=2 from=0 to=0.8 contact_num=2	
contact_type=ohmic	
top_contact column_num=3 from=0 to=0.4 contact_num=2	
contact_type=ohmic	
top_contact column_num=4 from=0 to=0.2 contact_num=2	
contact_type=ohmic	
top_contact column_num=5 from=0.6 to=2. contact_num=3	
contact_type=ohmic	
end_layer	

Simulation Setup

To run the simulation, we use the following .sol file. Different mobility models can be choosed using "low_field_mobility_model":

\$file:nmos.sol \$********
beain
convention positive_current_flow=inward
load_mesh mesh_inf=nmos.msh
output sol_outf=nmos.out
include file=nmos.doping
include file=nmos.mater
<pre>\$ source and drain doping doping impurity=shal_dopant charge_type=donor max_conc=1.e27 && x_prof=(0.0, 0.90, 0.001, 0.001) && y_prof= 2.30, 2.50, 0.02, 0.0001) doping impurity=shal_dopant charge_type=donor max_conc=1.e27 && x_prof=(1.60, 4.0, 0.001, 0.001) && y_prof= 2.30, 2.50, 0.02, 0.0001)</pre>
\$ poly doping doping impurity=shal_dopant charge_type=donor max_conc=1.e27 && x_prof=(0.6, 2.0, 0.001, 0.001) && y_prof=(2.52, 3.0, 0.0001, 0.0001)

\$ use low field mobility model \$ use masetti and enhanced lombardi model for b	ooth electrons and
noles	
low_field_mobility_model mater=1	&&
el_philips_unified_model =no	&&
el_doping_dependence_model=masetti	&&
el_carrier_carrier_model=void	&&
el_degradation_model=enhanced_lombardi	&&
hole_philips_unified_model=no	&&
hole_doping_dependence_model=masetti	&&
hole carrier carrier model=void	&&
hole degradation model=enhanced lombardi	&&
channel_interface_dir=horizontal_channel_inter	face_label=mylabel
\$ ***************** IdVd ****************	
newton_par damping_step=8. max_iter=100 prin	t_flag=3
equilibrium	
newton par damping step=5. max iter=60 print	flag=3
scan var=voltage 2 value to=3. init step=0.001	 &&
max step=0.2 min step=1.e-4	
scan var=voltage value to=4. init step=0.001 &	&
max_step=0.2 min_step=1.e-6	
\$ ***************** IdVg ***********************	
newton par damping step=8. max iter=60 print	flaq=3
equilibrium	
newton par damping step=4. max iter=60 print	flaa=3
scan var=voltage 3 value to=3. init step=0.001	<u> </u>
max step=0.2 min step=1.e-4	
scan var=voltage 2 value to=5 init step=0.001	8.8
max sten= 0.2 min sten= $1 \rho_{-6}$	
,	

end

Post-Processing

After the simulation, we can plot the results with the following .plt file.

\$file:nmos.plt ς ******* begin pstprc plot data plot device=postscript define alias name=current 3 alias=%Id define alias name=voltage_3 alias=%Vd define alias name=voltage 2 alias=%Vg \$plot IdVd-curve get data main input=nmos.sol sol inf=nmos.out && *xy data=(3 3) scan data=(1 3)* plot scan scan var=%Vd variable=%Id *\$plot IdVg-curve* get data main input=nmos.sol sol inf=nmos.out && *xy data=(6 6) scan data=(4 6)* plot scan scan var=%Vg variable=%Id data file=idvg.dat end pstprc

ldVd

IdVd curve using different mobility models

Masetti model combined with different interface models

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

ldVd

Masetti model combined with different carrier-carrier scattering models

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

IdVg curve using different mobility models

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

IdVg

Masetti model combined with different interface models

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Creators of Award Winning Software

nGalsP|Gals nGalar Tingal nGals[[]ng

LaGal

Composition

© 2010 Crosslight Software, Inc., Burnaby, BC, Canada www.crosslight.com

Software Inc. APSYS | CSUPREM | LASTIP | PICS3D | PROCOM | CROSSLIGHTVIEW

CROSLIGHT

Algabal Migaka

